

THERMOPLASTIC POLYESTER RESIN

Rynite® FG530 NC011 is a 30% glass reinforced modified polyethylene terephthalate resin. It has been developed for consideration into applications for the food industry.

FOOD CONTACT

This product is manufactured according to Good Manufacturing Practice (GMP) principles and generally accepted in food contact applications in Europe and the USA when meeting applicable use conditions. For details, individual compliance statements are available from our representative.

Product information

Resin Identification	PET-GF30		ISO 1043
Part Marking Code	>PET-GF30<		ISO 11469
Rheological properties			
Moulding shrinkage, parallel	0.2	%	ISO 294-4, 2577
Moulding shrinkage, normal	0.8		ISO 294-4, 2577
Typical mechanical properties			
Tensile modulus	10500	MPa	ISO 527-1/-2
Tensile stress at break, 5mm/min	162	MPa	ISO 527-1/-2
Tensile strain at break, 5mm/min	2.1	%	ISO 527-1/-2
Charpy impact strength, 23°C	40	kJ/m²	ISO 179/1eU
Charpy notched impact strength, 23°C		kJ/m²	ISO 179/1eA
Poisson's ratio	0.34		
Thermal properties			
Melting temperature, 10°C/min	257	°C	ISO 11357-1/-3
Glass transition temperature, 10°C/min	90	°C	ISO 11357-1/-3
Temperature of deflection under load, 1.8 MPa	242	°C	ISO 75-1/-2
Flammability			
FMVSS Class	В		ISO 3795 (FMVSS 302)
Burning rate, Thickness 1 mm		mm/min	ISO 3795 (FMVSS 302)
g,			(
Electrical properties			
Comparative tracking index	250		IEC 60112
Physical/Other properties			
Density	1570	kg/m³	ISO 1183
Deliaity	1370	Ng/III	150 1103

Printed: 2025-05-30 Page: 1 of 4

Revised: 2025-04-22 Source: Celanese Materials Database

THERMOPLASTIC POLYESTER RESIN

VDA Properties

Emission of organic compounds	16 μgC/g	VDA 277
Odour	3 class	VDA 270
Fogging, G-value (condensate)	0 mg	ISO 6452

Injection

Drying Recommended	yes	
Drying Temperature	120	°C
Drying Time, Dehumidified Dryer	4 - 6	h
Processing Moisture Content	≤0.01 ^[1]	%
Melt Temperature Optimum	285	°C
Min. melt temperature	280	°C
Max. melt temperature	300	°C
Screw tangential speed	≤0.2	m/s
Mold Temperature Optimum	130	°C
Min. mould temperature	120	°C
Max. mould temperature	140 ^[2]	°C
Hold pressure range	≥80	MPa
Hold pressure time	4	s/mm
Back pressure	As low as	MPa
	possible	

Ejection temperature 170 °C

[1]: At levels above 0.02%, strength and toughness will decrease, even though parts may not exhibit surface defects.

[2]: (6mm - 1mm thickness)

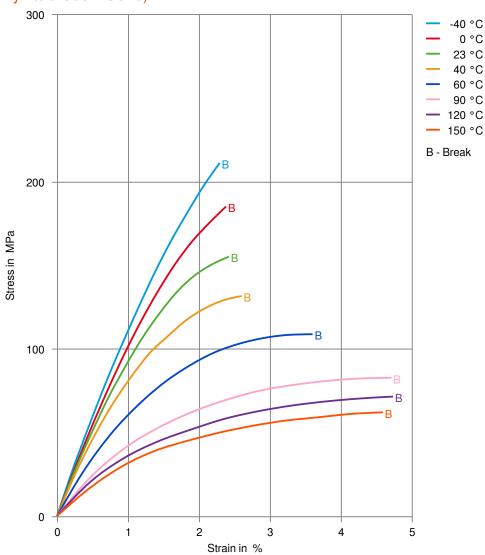
Characteristics

Processing Injection Moulding

Delivery form Pellets

Additives Release agent

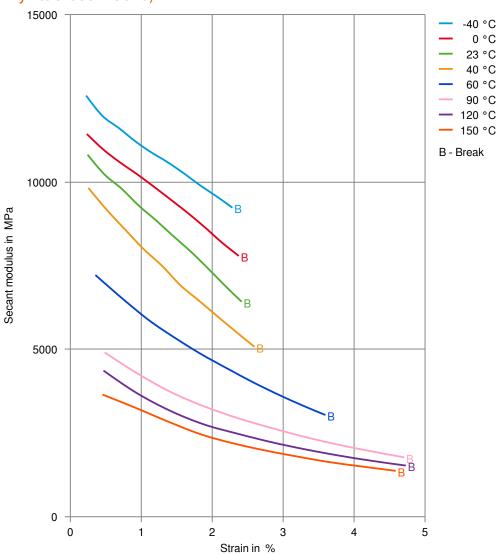
Printed: 2025-05-30 Page: 2 of 4


Revised: 2025-04-22 Source: Celanese Materials Database

THERMOPLASTIC POLYESTER RESIN

Stress-strain (measured on Rynite® 530 NC010)

Printed: 2025-05-30 Page: 3 of 4


Revised: 2025-04-22 Source: Celanese Materials Database

THERMOPLASTIC POLYESTER RESIN

Secant modulus-strain (measured on Rynite® 530 NC010)

Printed: 2025-05-30 Page: 4 of 4

Revised: 2025-04-22 Source: Celanese Materials Database

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any e

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.